
On K-means and PCA
Probabilistic Graphical Models, Master MVA

Chloé Habasque, Colin Coërchon, Maëlle Fontaine

December 2024

1 Introduction

1.1 Presentation of the articles

In the scope of this project, we reviewed three articles: K-means Clustering via Principal Com-
ponent Analysis [1], PCA-guided search for K-means [3] and Dimensionality Reduction using
PCA and K-Means Clustering for Breast Cancer Prediction [2].

These articles examine the interplay between Principal Component Analysis (PCA) and
K-means clustering. PCA is an unsupervised technique for dimensionality reduction, whereas
K-means is an unsupervised clustering algorithm. The first article [1] establishes a strong link
between the two methods, demonstrating that the principal components correspond to the
continuous solutions of the membership indicators in K-means clustering. Building on these
findings, PCA-guided search for K-means [3] proposes a method to enhance the efficiency of
K-means clustering. Specifically, it introduces the ’PCA-guided search’ approach, which uses
PCA to improve the initialization of the K-means algorithm, thereby making the clustering pro-
cess faster and more accurate. This emphasis on initialization is crucial, as the convergence of
K-means to local solutions depends heavily on its initialization. The third article, Dimension-
ality Reduction using PCA and K-Means Clustering for Breast Cancer Prediction [2], further
reinforces the connection between PCA and K-means. It focuses on reducing the dimensionality
of features for machine learning models by comparing the two methods and showing that K-
means clustering can act as a dimensionality reduction technique by generating clusters as new
features. Moreover, [3] illustrates the utility of PCA in unsupervised learning contexts, while
[2] highlights how K-means clustering can be leveraged for dimensionality reduction. Together,
these findings underscore the similarity between the two techniques and validate the insights
presented in [1].

1.2 Approach

This project builds on the findings of [1] and the applications explored in [3]. We reproduce
the results from [3] and extend them by proposing a Gaussian Mixture Model (GMM) ap-
proach. In this method, clusters in the PCA-reduced space are assigned using the Expectation-
Maximization (EM) algorithm, providing a probabilistic perspective on clustering. By com-
paring the performance of GMM with K-means, we aim to highlight the benefits of combining
PCA with probabilistic clustering.

1

1.3 Contributions

Although all team members contributed to various parts of the project, here are the main
contributions of each individual: Chloé Habasque worked on the PCA guided search method and
the different initialisations of K-Means, Colin Coërchon worked on the theoretical connection
between PCA and K-means, as well as the theory and implementation of the EM algorithm
for GMM. Maëlle Fontaine focused on the third section, studying the contribution of GMM to
PCA-guided search and the question of the number of clusters.

2 Method
The algorithms PCA and K-means, which form the basis of the methods developed in this
project, are detailed in the appendix (Appendix A, Appendix B).

2.1 PCA as a continuous solution to K-means clustering

The standard iterative solution of K-means faces a key limitation: the solutions tend to
converge to local minima due to the greedy nature of its updates. To mitigate this issue,
initialization plays a critical role. In [1], a theoretical link between K-means and PCA is
established, showing that principal components provide a continuous solution of cluster
membership indicators in K-means.

This insight can enhance K-means results, as PCA provides a relaxed solution to the K-
means clustering problem, enabling spectral methods inspired by PCA to approximate clusters
before applying K-means.

Proof

The proof is detailed in the Appendix E. Here are the main lines.

The foundation of the proof relies on rewriting the within-cluster inertia JK , which K-
means aims to minimize:

JK =
K∑
k=1

∑
i∈Ck

∥xi −mk∥2

For K = 2: JK = nȳ2 − JD
2

For K > 2: JK = Tr(XTX)− Tr(HT
KX

TXHK)

This reformulation reveals the link between PCA and K-means. Why ?
By relaxing the binary constraint on cluster indicators hk, the K-means objective JK
is reformulated as an eigenvalue problem. Specifically, minimizing JK reduces to this
optization problem :

max
QK−1

Tr(QT
K−1(Y

TY)QK−1)

The solution lies in the space spanned by the first K − 1 eigenvectors of the covariance
matrix Y TY . To illustrate, using the eigenvectors from PCA to determine clusters is
straightforward for K = 2. The clusters C1, C2 are given by:

C1 = {i | v1(i) ≤ 0} and C2 = {i | v1(i) > 0}

2.2 PCA-guided search for K-means

The approach proposed in [3] focuses on the initialization of the algorithm, aiming for faster
convergence towards a better clustering solution. Random initialization carries the risk of

2

converging to a local minimum far from the optimal solution. To mitigate this, methods like
K-means++ have been developed.
This paper leverages the relationship between K-means and PCA to propose a new initialization
strategy. The method first reduces the dimensionality of the data to the number of clusters
using PCA. K-means is then performed in this reduced space, where the risk of falling into a
poor local minimum is lower. The resulting centroids are projected back into the original space
to serve as initial centroids for K-means. This approach not only improves convergence but
also accelerates computation, as K-means in the reduced space is less costly. When projected
back, the centroids are already close to the final solution.

We tested several initialization methods for K-means centroids in the reduced space, includ-
ing:

- Random R1 : Points are randomly assigned to clusters, and centroids are computed for
each cluster.

- Random R2 : K points are randomly selected as centroids.

- K-means++: The first centroid is chosen randomly, with subsequent centroids selected
iteratively based on a probability proportional to the distance from the nearest existing
centroid.

- KKZ : The first centroid is the point with the largest norm, and subsequent centroids are
chosen iteratively as the farthest points from existing centroids, with no randomness here.

3 Discussion and extensions

3.1 Limitations of K-means

Let Zik be an indicator variable equal to 1 if individual i belongs to cluster k, and 0 otherwise.
This variable is unknown, and the objective of K-means is to estimate it using the observed
data Xi. K-means assumes that each cluster has an equal probability of assignment: P(Zik =
1) = π = 1/K ∀i, k. Furthermore, it assumes each cluster has its own mean µk, while all
clusters share the same uniform spread in all directions, represented by an identical covariance
matrix Σk = I ∀k, where I is the identity matrix.

These strong assumptions limit K-means’ flexibility and can lead to poor clustering perfor-
mance, especially in reduced-dimensional spaces where data points are closer together, amplify-
ing these constraints. While the PCA-guided search helps by clustering in reduced dimensions,
it still relies on the inherent assumptions of K-means, which may result in suboptimal initial-
ization and clustering performance.

3.2 Extensions for PCA-guided search

The PCA-guided search improves clustering results. However, it depends on an initial step using
random K-means initialization. We propose extending this approach by comparing the various
K-means initialization methods discussed in the paper, applied in the reduced-dimensional
space. Nonetheless, the limitations of K-means are even more pronounced in lower-dimensional
spaces, often leading to unrealistic assumptions during initialization.

To address these limitations, we propose replacing the K-means initialization step in the
reduced space with a Gaussian Mixture Model (GMM) with the Expectation-Maximization
(EM) algorithm. Unlike K-means, GMM allows for cluster-specific covariance structures and
provides a probabilistic assignment of data points to clusters, making it more flexible and
realistic. This initialization method ensures that centroids in the reduced space are better
aligned with the underlying data distribution. Once initialized with GMM, the centroids can
be projected back into the original space to serve as the starting points for K-means. This hybrid

3

approach balances the flexibility and accuracy of GMM with the computational efficiency of
K-means in higher dimensions, resulting in improved clustering performance and a more robust
initialization process.

3.3 GMM and EM

3.3.1 Gaussian Mixture Models (GMM)

In a GMM, the latent variables introduced earlier are assumed to follow a multinomial dis-
tribution. Specifically, P(Zik = 1) = πk ∀i, which can be interpreted as each cluster having
a distinct "attractiveness" level. Moreover, the observed data Xi is modeled as following a
Gaussian distribution conditional on the cluster it belongs to: Xi|Zik = 1 ∼ N (µk,Σk). Unlike
K-means, GMM allows Σk to have non-zero covariances and feature-specific variances that can
vary across clusters. Figure 1 illustrates these differing assumptions in a clustering task per-
formed in a 2D reduced space, using the MNIST dataset. We observe that, K-means assumes
clusters to be spherical, while EM (GMM) allows to detect clusters with elliptical shapes or
different orientations in space.

3.3.2 EM algorithm

The EM (Expectation-Maximization) algorithm for GMM maximizes the exact data log-likelihood
of the model. It relies on two critical properties regarding the law of the cluster indicator
variables Zi given the observations and parameters: their independence and their analytical
multinomial distribution. Detailed steps of the algorithm are provided in Appendix F.

First component

Se
co

nd
 p

rin
cip

al
 c

om
po

ne
nt

K-means for MNIST in a 2D reduced space

First component

Se
co

nd
 p

rin
cip

al
 c

om
po

ne
nt

EM for MNIST in a 2D reduced space (our EM)

Figure 1: Illustration of EM and K-means clustering in a PCA reduced space on MNIST data

3.4 Experiments

As discussed in subsection 3.2, we initialized the PCA-guided search with a more robust model:
a GMM, using the EM algorithm. This algorithm is applied to the PCA-reduced data, where
we retained 20 dimensions in the reduced space. This choice was made empirically, considering
the percentage of explained variance.

Following the methodology in [3], we performed 1000 runs of various clustering algorithms.
Figure 2 presents the obtained inertias sorted in decreasing order, and Appendix C displays
the optimal results. We included K-means, K-means++, and PCA-guided search with random
initialization in the reduced space. Additionally, we introduced algorithms using alternative
initializations for K-means in the reduced space, most notably the GMM-based initialization,

4

as well as K-means++ and KKZ initialization.

0 200 400 600 800 1000
Sorted iterations

1.16

1.18

1.20

1.22

1.24

In
er

tia
s

1e9
K-means random
K-means++
PCA-guided search - initialization K-means random
PCA-guided search - KKZ initialization
PCA-guided search - initialization K-means++
PCA-guided search - initialization GMM

Figure 2: Decreasing inertias in 1000 rollouts of different clustering algorithms

The results show that the GMM-based approach clearly outperforms the alternatives in
terms of inertia. However, when focusing on the best result across all iterations, all random-
based algorithms achieve a similar minimal inertia. This can be attributed to the relatively
small size of the dataset: over 1000 runs, randomness allows convergence to the same optimal
solution at least once. However, given the shape of the curves, we can expect that with a larger
dataset, the EM-based approach would yield a more significant advantage. Besides, In cases
where repeated iterations of the algorithm are computationally impractical, the GMM-based
initialization is clearly the preferred choice for achieving superior results with fewer runs.

3.5 Adding clusters

In our experiments, we initially considered K = 10, corresponding to the 10 classes in the
MNIST dataset. However, here we explore the potential benefits of increasing the number of
clusters. As shown in Figure 4, some digits appear to occupy multiple clusters. For instance, the
digit 0 seem to be assigned to two clusters, while digits 3 and 4 seem to lack dedicated clusters.
Digits 9 and 7 show poor separation, and two clusters appear to act as catch-all classes. This
suggests that allowing certain digits to occupy multiple clusters could "free up" space for new
distinct clusters, improving separation and addressing differences in writing styles. The goal is
to strike a balance: achieving better separation while avoiding an excessive number of clusters
that could fragment meaningful groups.

Determining the optimal number of clusters K remains a challenge, as no perfect method
exists. To address this, we used empirical criteria based on the Bayesian Information Criterion
(BIC) and Akaike’s Information Criterion (AIC). The EM algorithm was run for values of K
ranging from 10 to 20 in a reduced-dimensional space (15 dimensions retained). For each K,
we ran the algorithm 50 times, recording the highest log-likelihood result and computing the
associated criterion. If Lk(π̂, θ̂) denotes the log-likelihood for k clusters, the BIC is given by:
BIC(k) = Lk(π̂, θ̂) − (Mk/2)log(n), where Mk = k − 1 + kd + kd(d + 1)/2 represents the
number of free parameters in the model, with d = 15 dimensions and n = 500 images. The
AIC criterion is AIC(k) = Lk(π̂, θ̂)−Mk.

The results showed that AIC displayed a strictly increasing trend, while BIC produced a
strictly decreasing curve. To address this issue, we adjusted the penalization with a balanced

5

Figure 3: Revisited BIC criterion for different values of K

intermediate weighting. Specifically, we adopted the criterion: C(k) = Lk(π̂, θ̂)−(Mk/4)log(n).
In other words, we used half of the BIC penalization.

The graph in Figure 3 illustrates the evolution of our criterion across different values of K.
The maximum value is reached at K = 18. Consequently, we performed a new PCA-guided
clustering using EM initialization, with 18 clusters. The Figure 5 (in Appendix D) displays
sample images from each cluster. The improvement is clear: every digit now has at least one
dedicated cluster, and there is little mixing between classes.

Figure 4: Samples from each cluster (by raw) with the GMM approach (K = 10)

4 Conclusion
In this work, we explored the close relationship between dimensionality reduction and cluster-
ing. We highlighted the critical role of initialization in clustering algorithms and demonstrated
how dimensionality reduction can aid in this process. Furthermore, we implemented and pro-
posed improvements, particularly through the use of GMM and the EM algorithm. However, it
is worth noting that more suitable deep learning approaches might better address this problem.
Unlike clustering, which operates on individual pixels and is then highly sensitive to transla-
tions, shape deformations, and augmentations, deep learning methods can leverage spatial and
structural information to provide more robust solutions.

6

References
[1] Chris Ding and Xiaofeng He. K-means clustering via principal component analysis. In

Twenty-first international conference on Machine learning - ICML ’04, New York, New
York, USA, 2004. ACM Press.

[2] Ade Jamal, Annisa Handayani, Ali Akbar Septiandri, Endang Ripmiatin, and Yunus Ef-
fendi. Dimensionality reduction using PCA and K-Means clustering for breast cancer pre-
diction. Lontar Komputer Jurnal Ilmiah Teknologi Informasi, page 192, December 2018.

[3] Qin Xu, Chris Ding, Jinpei Liu, and Bin Luo. PCA-guided search for k-means. Pattern
Recognit. Lett., 54:50–55, March 2015.

7

Appendix

A PCA
The Principal Component Analysis (PCA) algorithm is a statistical method used to reduce
the dimensionality of data while preserving as much variance as possible. The main steps are
as follows:

1. Data Centering: The data is centered by subtracting the mean of each feature. Given a
data matrix X ∈ Rn×d, where n is the number of samples and d is the number of features,
each data point xi is centered as:

x̃i = xi −
1

n

n∑
i=1

xi.

2. Covariance Matrix: The covariance matrix C ∈ Rd×d of the centered data matrix X̃ is
computed as:

C =
1

n
X̃T X̃,

3. Eigenvalue and Eigenvector Decomposition: The covariance matrix C is decom-
posed to find its eigenvalues λ1, λ2, . . . , λd and their associated eigenvectors v1, v2, . . . , vd,
such that ∀i ∈ {1, ..., d}, Cvi = λivi.

4. Projection onto Principal Components: The data is projected onto the first k prin-
cipal components (those corresponding to the k largest eigenvalues) to obtain a reduced-
dimensional representation:

Z = X̃Vk,

where the columns of Vk ∈ Rd×k are the eigenvectors corresponding to the k largest
eigenvalues.

The projected data Z retains most of the variance from the original data while reducing its
dimensionality.

B K-means algorithm
The k-means clustering algorithm is a popular unsupervised learning method used to par-
tition a dataset into k distinct clusters based on feature similarity. The objective is to assign
clusters in such a way as to minimize the total within-cluster variance. The steps of the algo-
rithm are as follows:

1. Initialization: Selects k initial cluster centroids µ1, µ2, . . . , µk given a chosen heuristic.
This initialization has a huge importance on the convergence of the algorithm, which we
focus on the project.

2. Cluster Assignment Step: Each data point xi is assigned to the cluster whose centroid
is the closest, according to the Euclidean distance. This step minimizes the within-cluster
sum of squares and the cluster assignment for the i-th data point is:

ci = arg min
j∈J1,kK

∥xi − µj∥22

3. Centroid Update Step: The centroids of each cluster is recomputed by taking the
mean of all points assigned to that cluster:

µj =
1

|Cj|
∑
xi∈Cj

xi

where Cj is the set of data points assigned to cluster j.

4. Convergence Check: The cluster assignment and centroid update steps are repeated
until the centroids no longer change (or the change is below a predefined threshold), or a
maximum number of iterations is reached.

If there is convergence, the algorithm return a local minima of the total within-cluster
variance J :

J =
k∑

j=1

∑
xi∈Cj

∥xi − µj∥2

C Inertia depending on models

Models Min Inertia (10e9) Execution time

PCA-guided Search with Random R2 1.1622 1.59
PCA-guided Search with KKZ 1.1683 2.27
PCA-guided Search with KR 1.1616 2.82
PCA-guided Search with K-means++ 1.1910 1.21
PCA-guided Search with GMM 1.1617 2.35

Table 1: Results for the MNIST Dataset

D Results for K=18 clusters

Figure 5: Samples from each cluster (by raw) with the GMM approach (K = 18)

E PCA as a continuous solution to K-means clustering:
proof

In K-means, we minimize the intra-cluster inertia JK , which corresponds to the sum of
Euclidean distances between each point and its associated centroid:

JK =
K∑
k=1

∑
i∈Ck

∥xi −mk∥2

To help proving the theoretical connection between the K-means algorithm and PCA, the
article introduces some notations, particularly for the singular value decomposition:

• X represents the original data matrix.

• Y = (y1, · · · , yn), où yi = xi − x̄, represents the centered data matrix.

• The covariance matrix (ignoring the factor 1/n) is given by: Y Y T .

• The principal directions uk eand the principal components vk are the eigenvectors satis-
fying:

Y Y Tuk = λkuk, Y TY vk = λkvk, vk =
Y Tuk

λ
1/2
k

(1)

• These are the equations defining the Singular Value Decomposition (SVD) of Y :

Y =
∑
k

λkukv
T
k

To better understand this proof, it is important to focus on this theoretical connection when
the number of clusters K is only 2.

E.1 Proof for K = 2

Firstly, JK is not convex, so it may be helpful to rewrite this intra-cluster inertia:
Lemma E.1 : Rewriting JK

Let ∀K > 1, nk = |Ck| and mk =
1
nk

∑
i∈Ck

xi, we have :

JK =
K∑
k=1

∑
i∈Ck

∥xi −mk∥2 =
K∑
k=1

∑
i,j∈Ck

∥xi − xj∥2

2nk

Proof.
Let k ∈ J1, KK, let’s expand the second expression for cluster k.

∑
i,j∈Ck

∥xi − xj∥2

2nk

=
∑

i,j∈Ck

∥xi∥2 − 2⟨xi, xj⟩+ ∥xj∥2

2nk

=
1

2nk

∑
i,j∈Ck

∥xi∥2 +
1

2nk

∑
i,j∈Ck

∥xj∥2 −
1

nk

∑
i,j∈Ck

⟨xi, xj⟩

=
1

nk

∑
i,j∈Ck

∥xi∥2 −
1

nk

∑
i,j∈Ck

⟨xi, xj⟩

=
∑
i∈Ck

∥xi∥2 −
1

nk

∑
i,j∈Ck

⟨xi, xj⟩︸ ︷︷ ︸
≜S1

(because |Ck| = nk)

Let’s simplify S1 :

S1 =
1

nk

∑
i∈Ck

∑
j∈Ck

⟨xi, xj⟩ =
∑
i∈Ck

⟨xi,mk⟩ =

〈∑
i∈Ck

xi,mk

〉
= nk⟨mk,mk⟩ = nk∥mk∥2

And so : ∑
i,j∈Ck

∥xi − xj∥2

2nk

=
∑
i∈Ck

∥xi∥2 − nk∥mk∥2

Expanding the first expression for the same k ∈ J1, KK gives:

∑
i∈Ck

∥xi −mk∥2 =
∑
i∈Ck

(∥xi∥2 − 2⟨xi,mk⟩+ ∥mk∥2)

=
∑
i∈Ck

∥xi∥2 − 2
∑
i∈Ck

⟨xi,mk⟩+ nk∥mk∥2

=
∑
i∈Ck

∥xi∥2 − 2nk⟨mk,mk⟩+ nk∥mk∥2

=
∑
i∈Ck

∥xi∥2 − nk∥mk∥2

Thus, we have proven that for all ∀k ∈ J1, KK, we have:

∑
i∈Ck

∥xi −mk∥2 =
∑

i,j∈Ck

∥xi − xj∥2

2nk

Summing over all finite k, the proof of the lemma is complete.

To obtain a more interesting and usable expression for the intra-cluster inertia JK , the
article [1] introduces an inertia JD.

For K=2, this inertia is defined as:

JD =
n1n2

n

[
2
d(C1, C2)

n1n2

− d(C1, C1)

n2
1

− d(C2, C2)

n2
2

]
We also define the distance between two classes as:

d(Ck, Cl) =
∑
i∈Ck

∑
j∈Ck

(xi − xj)
2

So, Lemma E.2 provides the desired rewriting of JK .
Lemma E.2 : Second rewritting of JK

Noting n =
∑K

k=1 nk and x = 1
n

∑n
i=1 xi, we define y2 = 1

n

∑n
i=1 ∥yi∥2.

Therefore, we have :

JK = ny2 − JD
2

Proof.
First, let’s recall the decomposition of the total inertia in terms of the inter-class and intra-

class inertia:

n∑
i=1

∥xi − x∥2 =
K∑
k=1

∑
i∈Ck

∥xi −mk∥2︸ ︷︷ ︸
intra-class inertia

+
K∑
k=1

nk∥mk − x∥2︸ ︷︷ ︸
inter-class inertia

Now, JK =
∑K

k=1

∑
i∈Ck

∥xi −mk∥2. This relation can be written as:

n∑
i=1

∥xi − x∥2 = JK +
K∑
k=1

nk∥mk − x∥2 (2)

By definition:

y2 =
1

n

n∑
i=1

∥yi∥2 =
1

n

n∑
i=1

∥xi − x∥2

Multiplying by n and substituting into equation (2), we obtain:

ny2 = JK +
K∑
k=1

nk∥mk − x∥2 (3)

We now need to link the quantity
∑K

k=1 nk∥mk − x∥2 to the expression of JD. We aim to
prove that:

K∑
k=1

nk∥mk − x∥2 = JD
2

Proof for K = 2 :
Consider two clusters C1 and C2of sizes n1 and n2 with n = n1 + n2. The given expression

of JD (for K=2) is:

JD =
n1n2

n

[
2
d(C1, C2)

n1n2

− d(C1, C1)

n2
1

− d(C2, C2)

n2
2

]
1. Decompostion of d(C1, C2) :

Let’s write ∥xi − xj∥2 by introducing the centroids m1 et m2:

∥xi − xj∥2 = ∥(xi −m1) + (m1 −m2) + (m2 − xj)∥2

When summing i ∈ C1 and j ∈ C2, the linear terms in (xi − m1) and (m2 − xj)
disappear because

∑
i∈C1

(xi−m1) = 0 and
∑

j∈C2
(m2−xj) = 0. Therefore, the cross

terms vanish. Finally:

d(C1, C2) = n1n2∥m1 −m2∥2 + n2

∑
i∈C1

∥xi −m1∥2 + n1

∑
j∈C2

∥xj −m2∥2

Dividing by n1n2 gives:

d(C1, C2)

n1n2

= ∥m1 −m2∥2 +
∑

i∈C1
∥xi −m1∥2

n1

+

∑
j∈C2

∥xj −m2∥2

n2

2. Substitution in JD :

Replacing d(C1, C2)/(n1n2) and each d(Ck, Ck)/n
2
k:

• We have d(Ck,Ck)

n2
k

= 2
∑

i∈Ck
∥xi−mk∥2

nk
.

• The expression inside the brackets:

2

(
∥m1 −m2∥2 +

∑
i∈C1

∥xi −m1∥2

n1

+

∑
j∈C2

∥xj −m2∥2

n2

)

− 2

∑
i∈C1

∥xi −m1∥2

n1

− 2

∑
j∈C2

∥xj −m2∥2

n2

= 2∥m1 −m2∥2

Hence JD = n1n2

n
· 2∥m1 −m2∥2, which implies:

JD
2

=
n1n2

n
∥m1 −m2∥2

3. Relation between
∑

k nk∥mk − x̄∥2 et ∥m1 −m2∥2 :

We have:

x̄ =
n1m1 + n2m2

n
=⇒ n1(m1 − x̄) + n2(m2 − x̄) = 0

This implies a linear relationship between m1 − x̄ and m2 − x̄. By manipulating this
relationship (and performing a small algebraic calculation), we obtain:

2∑
k=1

nk∥mk − x̄∥2 = n1n2

n
∥m1 −m2∥2

Therefore:

JD
2

=
2∑

k=1

nk∥mk − x̄∥2

4. Conclusion :

We had in (3) :

JK = nȳ2 −
2∑

k=1

nk∥mk − x̄∥2

and then:

JK = nȳ2 − JD
2

This is exactly the desired equality.

By extension, for K clusters, a similar reasoning (or by induction) allows us to generalize
this result. Thus, we obtain:

K∑
k=1

nk∥mk − x∥2 = JD
2
. (4)

It is then enough to substitute (4) in (3) :

JK = ny2 −
K∑
k=1

nk∥mk − x∥2 = ny2 − JD
2

Which prove the second rewriting of JK .

We recall that the goal of the K-means algorithm is to minimize the intra-cluster inertia
JK . But, Lemma E.2 allows us to write JK as ny2 − JD

2
.

• y2 is by definition a constant.

• We showed in the proof of the lemma E.2 that :

JD =
2n1n2

n
∥m1 −m2∥2

Hence JD is always positive.

Thus, we can summarize all this information in a single very useful theorem :
Theorem E.1 : K-means seen as a maximization

For K = 2, minimization of K-means cluster objective function JK is equivalent to
maximization of the distance objective JD, which is always positive.

The theorem E.1 leads to a solution of the K-means algorithm through Principal Component
Analysis (PCA). This is what we will directly observe in the following theorem E.2.

Theorem E.2 : K-means clustering via PCA

For K-means clustering where K = 2, the continuous solution of the cluster indicator
vector is the principal component v1, i.e., clusters C1, C2 are given by

C1 = {i | v1(i) ≤ 0} et C2 = {i | v1(i) > 0}

Proof.
We will not detail all the calculations here, but our comprehension of the intuition behind

the proof.
Consider the discrete indicator vector q ∈ Rn such that:

q(i) =

√

n2

n1n
si i ∈ C1

−
√

n1

n2n
si i ∈ C2

Its definition is directly in link with the definition of JD. Indeed, we easily have:

qTDq = −JD

Where D = (dij) is the matrix of squared distances, dij = ∥xi − xj∥2.

This vector satisfies
∑

i q(i) = 0 and ∥q∥2 = 1, and it is chosen in such a way that the
objective JK (or JD) is expressed in terms of q. The problem then becomes finding q that
minimizes JK (or maximizes JD) which resembles a difficult combinatorial optimization problem
due to the constraint on the values of q.

Transition to the continuous problem :
To path through this difficulty, we relax the discrete constraint on q and allow q(i) to

take continuous real values in the range [−1, 1]. We then consider the optimization problem:

min
q∈[−1,1]n

s.c.
∑

i q(i)=0, ∥q∥2=1

qTDq (P)

The optimal vector q is then associated with the smallest eigenvalue (the most negative)
of the matrix D. However, to obtain a more usable solution, we introduce a centered version of
D, denoted D̂, obtained by subtracting the row means, column means, and the overall mean.
After an algebraic calculation, it can be shown that this centered matrix is written in the form:

D̂ = −2Y TY

But, the eigenvectors of Y Y T correspond precisely to the principal components, which are
the directions of greatest variance in the data.

This matrix D̂ has the convenient property of being defined such that:

qT D̂q = qTDq = −JD

And, since D̂ = −2Y TY , it is therefore sufficient to solve the following new optimization
problem:

max
q∈[−1,1]n

s.t.
∑

i q(i)=0, ∥q∥2=1

qT (Y TY)q (P’)

Therefore, minimizing JK (or maximizing JD) in this continuous space amounts to finding
the eigenvector associated with the largest eigenvalue of Y Y T , in other words, the first
principal axis of PCA (denoted u1). This vector provides a continuous partition of the data.

Returning to a discrete solution:
To return to a binary partition, we simply classify the points based on the sign of their

coordinate on this first axis:

C1 = {i | v1(i) ≤ 0} et C2 = {i | v1(i) > 0}

This classification naturally separates the dataset into two groups, C1 and C2.

In summary, the continuous solution to the K-means problem with K = 2 is provided by the
first eigenvector of the covariance matrix, which is, the first principal component. By assigning
points based on the sign of this component, we obtain the desired partition, showing the deep
connection between K-means and PCA.

E.2 Proof for arbitrary K

In the general case where K > 2, the objective of the K-means remains the same: we are looking
for a partition of {1, . . . , n} into K clusters of sizes nk, with centroids mk = 1

nk

∑
i∈Ck

xi, in
order to minimize the function

JK =
K∑
k=1

∑
i∈Ck

∥xi −mk∥2

To represent the membership of points to the clusters, we first introduce a family of K
discrete indicator vectors hk ∈ Rn defined by:

hk = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
nk

, 0, . . . , 0)T/
√
nk

Each hk has exactly nk components equal to 1/
√
nk and the others are zero, representing the

membership of a contiguous block of points to the cluster Ck. These vectors are then grouped
into a matrix HK = (h1 · · ·hK).

By rewriting JK using HK , it is shown in the paper [1] that:

JK = Tr(XTX)− Tr(HT
KX

TXHK)

However, the vectors hk have redundancy. Indeed,
∑K

k=1

√
nkhk =

√
n e, where e =

(1, . . . , 1)T . This introduces a linear dependence. To eliminate this and obtain a solution
closer to the one seen in the case K = 2, we perform an orthonormal linear transforma-
tion T ∈ RK×K such that the last column of T is tK = (

√
n1/n, . . . ,

√
nK/n)

T . Thus, we
define:

QK = HKT = (q1, . . . , qK) (5)

By this transformation, we obtain a set of indicator vectors qk that satisfy a stricter criterion,
analogous to the zero-sum condition (as in the case K = 2). For K = 2, this procedure reduces
the problem to the vectors already studied. For K > 2, we encounter a similar situation, but
this time with K − 1 continuous indicator vectors.

Transition to the continuous problem:
Following the logic used for K = 2, we can show that minimizing JK by relaxing the binary

constraint on the hk (or equivalently on the qk) amounts to searching for the eigenvectors
corresponding to the K − 1 largest eigenvalues of the covariance matrix Y TY (where Y is the
centered data matrix).

As in the case K = 2, it is possible to rewrite JK using the covariance matrix Y TY :

JK = Tr(Y TY)− Tr(QT
K−1Y

TY QK−1)

Thus, it is sufficient to solve the following optimization problem:

max
QK−1

Tr(QT
K−1(Y

TY)QK−1) (P”)

Problem (P”) is therefore a generalization of the optimization problem (P’) that we encoun-
tered in the case K = 2.

The corresponding theorem is stated as follows:

Theorem E.3 : K-means clustering via PCA (arbitrary K)

Let Y TY be the centered covariance matrix, then the continuous solution to the K-means
problem lies in the space spanned by the first K − 1 eigenvectors v1, . . . , vK−1 of Y TY .

Returning to a discrete solution:
Although the continuous solution to the K-means problem is simply obtained via the first

K − 1 principal components vk, it remains difficult to revert to a perfect discrete
solution, that is, to recover the indicator vectors hk and thus the exact partition of the K
clusters. The problem mainly lies in the calculation of the transformation T and the return to
the discrete form.

The paper proposes a trick that bypasses the need to know T and directly reconstructs HK .
Instead of trying to recover HK from the qk’s, we aim to recover HKH

T
K . Using equation (5),

we have:

HKH
T
K = (HKTK)(HKTK)

T = QKQ
T
K

Here, the qk’s are the discrete indicator vectors defined after the transformation T . The
idea is to directly use their "continuous versions" vk (the principal components) instead of the
qk’s. As shown in the paper, we approximate:

QK−1Q
T
K−1 ≃ VK−1V

T
K−1 =

K−1∑
k=1

vkv
T
k ,

This construction provides a practical tool: it is no longer necessary to explicitly know T
or reconstruct each hk. Instead, we use P to help us find a consistent discrete solution. Even
though this solution remains approximate and often requires additional steps (such as heuristics
or discretization algorithms), this approach allows us to bypass the initial difficulty and remains
very practical.

F EM algorithm for a GMM model
The EM algorithm allows to estimate the parameters θ of a mixture of m Gaussians from
observed data (Xi)i∈J1,nK.

F.1 Initialization

Before beginning the iterations, it is it is necessary to initialize the parameters θ = {αj, µj,Σj |
j ∈ J1,mK} :

• αj represents the proportion of the j-th gaussian component,

• µj is the mean of the jth gaussian,

• Σj is the covariance matrix of the jth gaussian.
The initialization can be random or based on a chosen heuristic.

F.2 E Step (Expectation)

The E step consists of computing the expectation of the conditional log-likelihood of the latent
variables, given the parameters estimated in the previous iteration, denoted θ(q).

Q(θ, θ(q)) = EZ |X,θ(q) [logP(X,Z; θ)]

In the case of a Gaussian mixture, this involves determining the probability of each obser-
vation Xi belonging to the jth Gaussian component, which we denote by ω

(q)
ij :

ω
(q)
ij = P

(
Zi = j | Xi = xi, θ

(q)
)
.

Using Bayes’ inversion rule, we obtain:

ω
(q)
ij = P

(
Zi = j | Xi = xi, θ

(q)
)

=
P
(
Zi = j,Xi = xi | θ(q)

)
P (Xi = xi | θ(q))

=
P(Zi = j | θ(q))P(Xi = xi | Zi = j, θ(q))∑m
ℓ=1 P(Zi = ℓ | θ(q))P(Xi = xi | Zi = ℓ, θ(q))

(law of total probability)

=
α
(q)
j N (xi | µ(q)

j ,Σ
(q)
j)∑m

ℓ=1 α
(q)
ℓ N (xi | µ(q)

ℓ ,Σ
(q)
ℓ)

And therefore:

ω
(q)
ij =

α
(q)
j N (xi | µ(q)

j ,Σ
(q)
j)∑m

ℓ=1 α
(q)
ℓ N (xi | µ(q)

ℓ ,Σ
(q)
ℓ)

The calculation is not yet complete, we need to determine Q(θ, θ(q)).

Computation of P(X,Z; θ) :

P(X,Z; θ) =
n∏

i=1

P(xi, zi; θ) =
n∏

i=1

m∏
j=1

P(xi, zi; θ)
1{zi=j}

The notation in terms of powers using the latent variables zi helps to simplify the calculation
of the log-likelihood.

Now, let us take the logarithm of P(X,Z; θ) to obtain the log-likelihood of the complete
data:

logP(X,Z; θ) =
n∑

i=1

m∑
j=1

1{zi=j} logP(xi, zi; θ)

=
n∑

i=1

m∑
j=1

1{zi=j} log (P(zi = j; θ)P(xi | zi = j; θ))

=
n∑

i=1

m∑
j=1

1{zi=j} log (αj N (xi | µj,Σj)) (by definition)

Transition to the conditional expectation with respect to Zij

The next step is to take the conditional expectation of this log-likelihood of the complete
data with respect to the conditional distribution of Z given X and θ(q):

Q(θ, θ(q)) = EZ|X,θ(q) [logP(X,Z; θ)]

= EZ|X,θ(q)

[
n∑

i=1

m∑
j=1

1{zi=j} log (αj N (xi | µj,Σj))

]

=
n∑

i=1

m∑
j=1

EZ|X,θ(q)

[
1{zi=j}

]
log (αj N (xi | µj,Σj))

Because EZ|X,θ(q)

[
1{zi=j}

]
= P

(
Zi = j | Xi = xi, θ

(q)
)
= ω

(q)
ij , we finally obtain :

Q(θ, θ(q)) =
n∑

i=1

m∑
j=1

ω
(q)
ij log (αj N (xi | µj,Σj))

This expression of Q(θ, θ(q)) will be used in the M step to update the parameters θ in
maximizing this function.

F.3 M step (Maximization)

The M step consist in maximizing the function Q given the parameters θ.

θ(q+1) = argmax
θ

Q(θ, θ(q))

To do this, we use the values of ω(q)
ij computed in the E-step to obtain the new estimates of

the parameters θ(q+1):

Q(θ, θ(q)) =
n∑

i=1

m∑
j=1

ω
(q)
ij log (αj N (xi | µj,Σj)) .

By differentiating this expression with respect to the parameters, we obtain the following
update rules:

• Proportions:

α
(q+1)
j =

1

n

n∑
i=1

ω
(q)
ij

• Means:

µ
(q+1)
j =

∑n
i=1 ω

(q)
ij xi∑n

i=1 ω
(q)
ij

• Covariances:

Σ
(q+1)
j =

∑n
i=1 ω

(q)
ij (xi − µ

(q+1)
j)(xi − µ

(q+1)
j)T∑n

i=1 ω
(q)
ij

	Introduction
	Presentation of the articles
	Approach
	Contributions

	Method
	PCA as a continuous solution to K-means clustering
	PCA-guided search for K-means

	Discussion and extensions
	Limitations of K-means
	Extensions for PCA-guided search
	GMM and EM
	Gaussian Mixture Models (GMM)
	EM algorithm

	Experiments
	Adding clusters

	Conclusion
	PCA
	K-means algorithm
	Inertia depending on models
	Results for K=18 clusters
	PCA as a continuous solution to K-means clustering: proof
	Proof for K = 2
	Proof for arbitrary K

	EM algorithm for a GMM model
	Initialization
	E Step (Expectation)
	M step (Maximization)

