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Principal Component Analysis (PCA) and K-means clustering are closely related unsupervised learning techniques. PCA reduces dimensionality by identifying principal components, while

K-means clusters data points, and their synergy can enable innovative applications like improved algorithm initialization.

PCA as a Continuous Solution to K-means Clustering

In [1], a theoretical link between K-means and PCA is established, showing that prin-

cipal components provide a continuous solution for cluster membership indicators in

K-means.

The foundation of the proof relies on rewriting the within-cluster inertia JK , which

K-means aims to minimize:

JK =
K∑

k=1

∑
i∈Ck

‖xi − mk‖2

For K = 2: JK = nȳ2 − JD

2
For K > 2: JK = Tr(XTX) − Tr(HT

KXTXHK)

This reformulation reveals the link between PCA and K-means. To illustrate, using

the eigenvectors from PCA to determine clusters is straightforward for K = 2. The
clusters C1, C2 are given by:

C1 = {i | v1(i) ≤ 0} and C2 = {i | v1(i) > 0}

This insight can enhance K-means results, as PCA provides a relaxed solution to the

K-means clustering problem. It enables spectral methods inspired by PCA to approxi-

mate clusters before applying K-means.

PCA-guided search for K-means

In K-means algorithm, random initialization carries the risk of converging to a local mini-

mum that is far from the optimal solution. PCA-guided search aims to address this issue.

It follows three steps:

1. Dimensionality Reduction: Reduce the data to a number of dimensions equal to the

number of clusters using PCA.

2. Clustering in Reduced Space: Perform K-means in the reduced space, where the risk

of falling into a local minima is lower.

3. Centroid Projection: Project the centroids back to the original space to serve as the

initial centroids for a final K-means.

This technique accelerates execution and ensures the centroids start closer to the optimal

solution in the original space.

Limitations

K-means has significant limitations due to its rigid assumptions: each cluster shares an

identical covariancewhich reduces its flexibility, especially in lower-dimensional spaces.

While PCA-guided search improves clustering performance, it remains constrained by

K-means random initialization.

GMM versus K-Means Clustering

A proposed alternative involves replacing this step with a Gaussian Mixture Model

(GMM) using the Expectation-Maximization (EM) algorithm. Unlike K-means, GMM al-

lows for cluster-specific covariance structures and probabilistic point assignments, pro-

viding greater flexibility and a better alignment with the underlying data distribution.

GMM models observed data Xi as Gaussian distributions conditioned on cluster mem-

bership (Xi | Zik = 1) ∼ N (µk, Σk). Here, the EM algorithm optimizes the parameters

θ = {αj, µj, Σj | j ∈ J1, mK}. At each step of the algorithm, the parameters θ are updated
as follows:

θ(q+1) = arg max
θ

Q(θ, θ(q)) =
n∑

i=1

m∑
j=1

w
(q)
ij log (αj N (xi | µj, Σj))

Where w
(q)
ij are the responsibility coefficients, representing the posterior probability that

data point xi belongs to cluster j at iteration q.

First component

Se
co

nd
 p

rin
cip

al
 c

om
po

ne
nt

K-means for MNIST in a 2D reduced space
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EM for MNIST in a 2D reduced space (our EM)

The Importance of Initialization Methods for Clustering

We experiment with different initialization methods. Two of them directly initialize K-

means in the full space (K-means++ and Random). The other methods utilize the PCA-

guided search approach and are based on different initialization strategies applied in the

reduced space:

Random: K points are chosen randomly as centroids.

K-Means++: The first centroid is chosen randomly, and subsequent centroids are

selected iteratively with a probability proportional to their distance from the nearest

centroid.

KKZ: The first centroid is the point with the maximum norm, and the others are

selected iteratively as the furthest points from the existing centroids.

GMM: Points are assigned to clusters based on the assignment probabilities

computed by the Expectation-Maximization (EM) algorithm.
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Figure 1. Ordered Inertias Across 1000 Runs for Various K-means Initialization Methods.

The GMM-based approach outperforms on average the alternatives in terms of inertia,

even if when focusing on the best result across all iterations, all random-based

algorithms achieve a similar minimal inertia. This can be attributed to the relatively small

size of the dataset: over 1000 runs, randomness allows convergence to the same

optimal solution at least once.

Model Min Inertia (10e9) Execution time (s)

PCA-guided Search with Random 1.1622 1.59

PCA-guided Search with KKZ 1.1683 2.27

PCA-guided Search with K-Means++ 1.1910 1.21

PCA-guided Search with GMM 1.1617 2.35

Table 1. Performance Comparison: Inertia and Execution Time for Clustering on the MNIST Dataset

Choosing the Number of Clusters

As an extension, the MNIST dataset was first analyzed with K = 10 clusters to match
its 10 classes, with the PCA-guided search with GMM approach. However, some digits

spanned multiple clusters while others lacked clear assignments, and a few clusters acted

as catch-all groups. Allowing certain digits to occupy multiple clusters (by increasing K)
helped ”free up” space for new, distinct clusters, improving separation and addressing

variations in writing styles.

To optimizeK , the balance between distinct clusters and reasonable class sizes was con-
sidered. An empirical criteria based on Bayesian Information Criterion (BIC) and Akaike’s

Information Criterion (AIC) was used to evaluateK values from 10 to 20. Finally,K = 18
was chosen. This improved clustering achieved better separation, ensuring each digit had

at least one dedicated cluster with minimal overlap.

Figure 2. Random Samples from Each Clusters K = 10 (Left) vs K = 18 (Right).
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