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PCA as a Continuous Solution to K-means Clustering

In [1], a theoretical link between K-means and PCA is established, showing that prin-
cipal components provide a continuous solution for cluster membership indicators in
K-means.

The foundation of the proof relies on rewriting the within-cluster inertia Jx, which
K-means aims to minimize:
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For K = 2: Ji = nij* — 717 For K > 2: Jix = Te(XTX) — Tr(HEXT X Hy)

This reformulation reveals the link between PCA and K-means. To illustrate, using
the eigenvectors from PCA to determine clusters is straightforward for K = 2. The
clusters C, Cy are given by:

Cy={i|v(i) <0} and Ch={i|w@) >0}

This insight can enhance K-means results, as PCA provides a relaxed solution to the
K-means clustering problem. It enables spectral methods inspired by PCA to approxi-
mate clusters before applying K-means.

PCA-guided search for K-means

In K-means algorithm, random initialization carries the risk of converging to a local mini-
mum that is far from the optimal solution. PCA-guided search aims to address this issue.
't follows three steps:

1. Dimensionality Reduction: Reduce the data to a number of dimensions equal to the
number of clusters using PCA.

2. Clustering in Reduced Space: Perform K-means in the reduced space, where the risk
of falling into a local minima is lower.

3. Centroid Projection: Project the centroids back to the original space to serve as the
initial centroids for a final K-means.

This technigue accelerates execution and ensures the centroids start closer to the optimal
solution in the original space.

Limitations

K-means has significant limitations due to its rigid assumptions: each cluster shares an
identical covariance which reduces its flexibility, especially in lower-dimensional spaces.

While PCA-guided search improves clustering performance, it remains constrained by
K-means random initialization.

GMM versus K-Means Clustering

A proposed alternative involves replacing this step with a Gaussian Mixture Model
(GMM) using the Expectation-Maximization (EM) algorithm. Unlike K-means, GMM al-
lows for cluster-specific covariance structures and probabilistic point assignments, pro-
viding greater flexibility and a better alignment with the underlying data distribution.

GMM models observed data X; as Gaussian distributions conditioned on cluster mem-
bership (X; | Zi, = 1) ~ N (g, Xp). Here, the EM algorithm optimizes the parameters
0 ={aj, 1,25 | g €[1,m]}. Ateach step of the algorithm, the parameters 6 are updated
as follows:
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Where wfj) are the responsibility coefficients, representing the posterior probability that
data point x; belongs to cluster 5 at iteration gq.
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The Importance of Initialization Methods for Clustering

We experiment with different initialization methods. Two of them directly initialize K-
means in the full space (K-means++ and Random). The other methods utilize the PCA-
oulded search approach and are based on different initialization strategies applied in the
reduced space:

Principal Component Analysis (PCA) and K-means clustering are closely related unsupervised learning techniques. PCA reduces dimensionality by identifying principal components, while
K-means clusters data points, and their synergy can enable innovative applications like improved algorithm initialization.

= Random: K points are chosen randomly as centroids.

= K-Means++: The first centroid is chosen randomly, and subsequent centroids are
selected iteratively with a probability proportional to their distance from the nearest
centroid.

= KKZ: The first centroid is the point with the maximum norm, and the others are
selected iteratively as the furthest points from the existing centroids.

= GMM: Points are assigned to clusters based on the assignment probabilities
computed by the Expectation-Maximization (EM) algorithm.
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Figure 1. Ordered Inertias Across 1000 Runs for Various K-means Initialization Methods.

The GMM-based approach outperforms on average the alternatives in terms of inertia,
even If when focusing on the best result across all iterations, all random-based
algorithms achieve a similar minimal inertia. This can be attributed to the relatively small
size of the dataset: over 1000 runs, randomness allows convergence to the same
optimal solution at least once.

Model Min Inertia (10e9) Execution time (s)
PCA-guided Search with Random 1.1622 1.59
PCA-guided Search with KKZ 1.1683 2.27
PCA-gulded Search with K-Means++ 1.1910 1.21
PCA-gulded Search with GMM 1.1617 2.35

Table 1. Performance Comparison: Inertia and Execution Time for Clustering on the MNIST Dataset

Choosing the Number of Clusters

As an extension, the MNIST dataset was first analyzed with K = 10 clusters to match
its 10 classes, with the PCA-guided search with GMM approach. However, some digits
spanned multiple clusters while others lacked clear assignments, and a few clusters acted
as catch-all groups. Allowing certain digits to occupy multiple clusters (by increasing K)
helped "free up” space for new, distinct clusters, improving separation and addressing
variations in writing styles.

To optimize K, the balance between distinct clusters and reasonable class sizes was con-
sidered. An empirical criteria based on Bayesian Information Criterion (BIC) and Akaike’s
Information Criterion (AIC) was used to evaluate K values from 10 to 20. Finally, K = 18
was chosen. This improved clustering achieved better separation, ensuring each digit had
at least one dedicated cluster with minimal overlap.
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Figure 2. Random Samples from Each Clusters K = 10 (Left) vs K = 18 (Right).
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